
F E A T U R E D R E P O R T : B Y ROBERT E. SHELTON

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 3

Enterprise Re-Use
Distributed object computing and business
objects will cause re-use to happen. How will
we manage it?

Successful re-use requires fundamental change

Distributed object computing systems using message-bus middleware based on
Object Management Group’s Common Object Request Broker Architecture
(CORBA), Open Software Foundation’s Distributed Computing Environment remote
procedure calls (DCE RPC), NextStep DO and other ORB-like products are coming
into commercial use. Larger-scale information systems are being developed in
important or mission-critical areas. Examples of such systems include Fidelity
Investments fund management and trading desktop, fund management and front
office systems at Wells Fargo Bank and subsidiaries, customer service systems being
developed at MCI and a division of Pacific Bell, and trading systems at many of the
major Wall Street investment houses and banks.

In distributed object systems, components are made available on the enterprise
network to offer business services. In a funds management business, an account
object might offer balance, deposit and withdraw; a stock object might offer opening
price and closing price; a trade object could be placed or settled. In a telecom
environment, a premise might know its telephone number and service address, a
residence customer may have a billing address, and so on. Given the requisite
security clearance, any application could become a client of these objects, a
consumer of their services.

One side-effect of distributed object computing (DOC) is often overlooked: re-use
happens. DOC does not create “successful” re-use in the way the term is often used
to describe a benefit of object technology. Rather, DOC creates an environment in
which software components are inherently shared. Objects initially developed for
one application become “re-used” as other applications are developed to use their
services. Re-use is encouraged because DOC makes an object’s services available in
much the same way the RDBMS facilitated ad-hoc and shared access to date.

Sharing is a form of re-use which Data Administration organizations have sought to
achieve using relational databases, corporate data models and data warehouses. DOC
will supplement large database systems and make business objects, rather than
simply data tables, the focus of sharing. Business objects enable the sharing of
business process and business rules as well as data. DOC infrastructure is the
platform of choice for delivering business objects to an enterprise audience because
it masks many of the complexities of network distributed computing, and

Distributed Object
Computing will create
re-use opportunities

Sharing is an
overlooked form of
re-use

4Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol.

increasingly provides the services required for a robust distributed computing system
(e.g. security, transaction control, adapters for interfacing to legacy data systems).

With the growing use of DOC and business objects at an enterprise level, the idea of
re-use is changing. Initial enthusiasm for re-use focused on technology components
to simplify development of technically demanding software such as graphical user
interfaces and distributed systems. Re-use could be created, the argument ran, by
using libraries of purchased or custom-developed software components. These
libraries would replace the tradition of developers reinventing on project after
project that functionality which was essentially common. Today, with multiple
applications being developed to share a set of common business objects, the re-use
challenge becomes one of management rather than pure creation.

In this scenario, however, there lurks an irony: re-use still must be created! As
unmanaged sharing proliferates, each new application project is tempted to redefine
the data or procedures being re-used. Historically, this behavior has been observed in
applications which define and manipulate corporate data in conflicting ways. Thus,
these applications “share” the data, but corrupt it through conflicting definitions,
edits, and procedures. The same result can be achieved with objects if every
application is allowed to redefine fundamental enterprise concepts in conflicting
ways (and maintain separate storage as a result). The consequence is that re-use can
be defeated in the long-term through corruption of the underlying re-usable assets.

Management of the development and sharing of re-usable components must make
re-use part of the process of developing systems - and part of the culture which
develops those systems. Otherwise, re-use takes on a more anarchic flavor, and
becomes a cost driver instead of a cost-saver. Re-use can be achieved on an
economically-significant scale only by changing the values, organization structure
and business processes of Information Systems organizations.

Why Re-Use?

Re-use is beneficial because it avoids (eliminates) redundant work. The value of a
re-used asset can be measured in part by development and maintenance work (time
and cost) avoided. Perhaps more significant, though, are the consequences of re-use:

• Shared definitions of business concepts reduce data and process integrity
failures, redundant storage of data (records or instances), ripple effect from
propagating business change.

• Shared business processes reduces variation across business units where
differences add no competitive or operating advantage.

• Reduced cost of operation through elimination of non-productive variance --
differences in business practices or policy for difference sake is a large, rarely-
measured recurring expense in most large businesses.

• Reduced time to market - assembly of applications from pre-designed, pre-
fabricated parts

Re-use is Changing

Values, Organization
and Process

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 5

• Easier for developers to come up to speed on a second product/application once
they are familiar with the first application -- the parts used to construct both
applications will be similar.

Re-use applies equally to purchased and in-house-developed assets. In lieu of a
“development and maintenance cost”, commercial off-the-shelf components have
acquisition cost (often a license fee) and a support fees. Based on my experience, the
cost to an I.S. organization of acquiring reusable components from external vendors
is less than half the cost of developing exact functional-equivalent components in-
house (recalling that the external vendor amortizes development costs across
multiple customers). The annual cost of maintenance is an even smaller fraction
(commonly less than 20% of the license or purchase list price).

Other than cost, there are two crucial advantages to purchasing reusable components:
time and reliability. Off the shelf components are available now, while “equivalent”
parts developed in house would require (often significant) production lead time. Off
the shelf components have other users (unless your organization is the first
customer), thus have a known track record and bug list. Buying off the shelf
components is the most cost-, time- and quality-conscious way to obtain re-usable
components.

Re-use is not completely new. Large-scale re-use efforts have been sponsored by the
US Department of Defense to promote interoperability of vendor products through
Ada component libraries. Organizations such as the Re-use Library Interest Group
(“RIG”) provide self-help and information sharing for re-use managers. Data
Administration and enterprise data modeling are fundamentally about re-use of data
assets. Programming libraries of shared routines are an age-old form of re-use.

Object components, however, offer a variety of characteristics which make them
more compelling than procedural code and procedural designs as (pardon me)
objects of re-use:

• Well-defined interface protocols -- design-by-contract and constraint
specification combine to provide semantic interface integrity (as opposed to
syntactic integrity which is generally available with procedural modules in most
languages).

• Multi-purpose interface -- an object can support many methods, groups of
methods, views on methods (as opposed to a single routine having a single
interface).

• Combined data, procedures and rules create semantically and structurally
coherent packages.

• Modularity can be enforced through encapsulation (in some languages and
environments -- this is notably lacking in C++).

• Specialization facilitates adaptation of data, procedures and rules -- language-
supported inheritance, delegation and composition facilitate using objects as
parts and the idea of mass customization.

Distributed object computing takes parts which are well-suited to re-use (i.e. objects)
and facilitates making them generally available across the enterprise. Object Request
Broker middleware usually includes facilities for asking an object about its services.

Re-use COTS and
Custom Parts

Why Re-use is Hot
Again

6Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol.

Once parts are easily accessed by multiple users, and users can query objects about
their services, a defacto re-use opportunity exists. The challenge, clearly, becomes
one of management and focus, as ORB middleware helps to overcome some of the
mechanical access barriers posed by traditional library storage mechanisms.

DOC middleware is not, however, the only driver of renewed interest in re-use.
Today, many business managers and executives feel that the cost-benefit balance of
information technology is upside down. They perceive that growing expenditures
have not rejuvenated stagnant or declining IT leverage. On one level, therefore, re-
use (of technology components) is seen as a way to cut the cost of new systems
design and development. On a higher level, re-use (of business objects) is seen as a
way to correct the data and process integrity problems which have reached crisis
point in many large organizations -- and to enable the rapid assembly of new
business processes as the business changes ever more quickly each year.

What Is Re-Use?

The idea of re-use is changing because of the growing use of DOC and business
objects at an enterprise level. While initial re-use efforts focused entirely on low-
level technology components, organizations are increasingly looking to higher-level
re-use opportunities such as building multiple applications that share a set of
common business objects, or re-using standard architectures and large-scale design
components. Let us examine these different levels at which re-use can occur. In
order to do this, though, we will first briefly consider what is meant by “re use”.

Re-use is the incorporation of a unit of work (e.g. code, design, models) by at least
one project other than the one which developed a unit of work. Using a unit of work
again within the same project is not re-use according to this definition. Re-use is
about leverage (i.e. getting more from a sound investment) that is shared.

Dr. Adele Goldberg and Kenneth Rubin of ParcPlace Systems provide additional
criteria for our definition: re-use involves use of an existing unit of work for a new
purpose, and requires that existing "users" of that unit of work be able to expect
benefit from improvements made by future re-users. This criteria require that value
be delivered to someone other than the original creator, where even future
improvements add value “back” to the original consumers.

This definition of re-use is akin to sharing. Something is created, and multiple
consumers gain distinct value from it. When that thing is improved, and everyone
can benefit. This definition rules out “cut and paste re-use”.

Economically significant re-use requires that the work's total life cycle cost (initial
development or acquisition plus maintenance costs) be re-gained through re-use, and
that some additional value (i.e. profit) be gained beyond cost-recovery. This we will
term return on investment: cost recovery plus profit. (Note that cost of operation in
any particular situation has been excluded, as that would be weighed against the
perceived benefits achieved in applying the product. Thus I define total life cycle
cost and consequently ROI differently from total cost of ownership, which would

Third-party must use
the component

Retroactive Value
Added

Return on investment
is required

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 7

include the cost of operation.) This measure is based on avoided cost - that is, the
cost of not designing, producing, testing and maintaining comparable components
because the original one can fill future needs. If one assumes that the cost of re-
development is equal to the cost of developing the first product, then at least two
additional projects would need to use the initial product in order to generate a
positive return. The first re-user avoids (and thus “covers”) the cost of
redevelopment, while the second re-user reaps the “profit”.

Avoided cost must be balanced with the cost of making a component or product re-
usable. There is cost associated with making a product re-usable and managing it as
a re-usable asset. From experience, a re-usable component can cost twice as much to
design and develop as a non-re-usable one, but about the same amount to maintain.
This cost doubling arises from considering (up front) or adapting to (after initial
development and deployment) a broader set of requirements than posed by the initial
user of the component. (The reader may note that this cost factor is based on
informal metrics. The commercial software community does a poor job of tracking
and allocating primary costs, not to mention secondary costs due to re-use.)

By this reasoning, re-use is not economically significant until at least three
additional projects have used the unit of work: the first “covers” development cost;
the second amortizes the cost of adapting the component for re-use; while the third
reaps the initial profit by cost-avoidance.

Thus, the definition of re-use can be constrained by economic impact, and a
component would not be considered “re-used” until a threshold of use-instances (i.e.
3 projects) or a cost recovery goal (i.e. avoided cost is greater than actual cost) was
met. Or it can be based simply on the second-user standard. In each case, the
principle in common is amortization of the cost of a component across multiple and
separate consumers which delivers a favorable return on investment.

Levels of Re-use

Initial interest in re-use focused on code-level components. Over the last several
years, many organizations have raised their sights: higher-order components are
increasingly the focus of re-use efforts because they promise greater return on
investment. Let us consider why.

Consider by way of example a technology component: an object which displays a
graphic user interface window on a computer screen. Perhaps this component was
developed for the Microsoft Windows environment in the C programming language.
This component would have value to other C programmers using Windows, but no
value would be recouped by programmers developing in the various Unix
environments, under OS/2 or Macintosh, or in languages incompatible with C. A
similar component would be needed in each of the other environments in which the
organization developed applications. Application programs designed to use this
component would, likewise, need to be different in each environment -- although
they could all be consistent in using a common object for displaying a GUI window.

Making components
re-usable can add up-
front cost

Two criteria for
amortization

Rising above code-
level re-use

8Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol.

This situation need not pose a problem, provided that the organization focuses on
design re-use. In the above example, one would likely require slightly (or very)
different code-level components in environments as different as Macintosh,
Windows and Unix X/Windows simply because the environments themselves are
different in their designs and interface specifications. The basic principles of
opening a GUI window, however, can be abstracted into a component design that
would provide the application programmer with a uniform services interface across
these environments. This is the point of design-level re-use. The application
programmer can develop an application for multiple environments with design-level
re-use, and can also reap benefits from code-level re-use within a given environment.

So far, we have discussed re-use as though the target was a small-grain part such as a
GUI window or button component or string and integer classes -- software
development nuts and bolts. Greater benefits can be achieved by re-using large-grain
components such as business-level design patterns, business objects and application
frameworks.

Larger-grained components (like business objects and application frameworks) bring
greater re-use leverage. Why? Integrating small-grain components into a developer’s
thinking process involves more design work, searching for the “right” component,
and integration than standardizing on large-grain components. When integrating
large-grain components, the logic of component design is reversed: instead of
“figuring out” how to integrate a large number of small components into a design
conceived by the developer, the developer conceives the solution in terms of the
design inherent in the (smaller number of) large-grain components themselves. Each
component represents a comparatively larger element of the solution.

This is architecture-driven design, which shall be discussed in the context of patterns
later in this report. Before continuing this exploration, let us characterize the units of
re-use, and the levels at which re-use can profitably occur.

Categories of Re-Usable Components

An object is a black-box building block that represents a real-world (business
domain) or computer technology concept. An object packages the data (attributes or
variables) together with the procedures (methods or services) and semantic
constraints (rules and policy) that are relevant to the concept which the object
represents. Objects are hermetically sealed packages. An object's data are only
accessible to the outside world through the object's methods. The outside world does
not even know how the data or methods are implemented. (This is called
encapsulation.) An object presents a clearly-defined interface by which outsiders
may use its services. This interface makes objects effective units of re-usable work
because the semantics of the object can be defined and managed at the interface.

Objects are always defined from a point of view. If the object serves a narrow set of
needs (i.e. display a GUI feature), this viewpoint can be quite simple. If the object
represents a wider viewpoint (i.e. a Customer object which serves multiple purposes
across an organization) it may have a much more complex interface. In fact, not all

Design-level re-use
achieves portability

Small-grain vs large-
grain components

Larger is Higher
Leverage

Architecture-driven
Re-use

Why Objects are
Good Components

Viewpoint scopes
component
re-usability

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 9

properties will be relevant to all users of such objects defined from a corporate
viewpoint. (In effect, the viewpoint and the object reverse roles here, and the object
is externally defined by the collection of viewpoints.) This characteristic makes
objects excellent units of modularity for business analysis, systems design and
program construction because the boundary of that modularity is defined by some
external (business or technology) concept instead of by units of programming (e.g.
load modules and compilation units). The more closely an object’s definition aligns
with the problem or solution space, the more useful it is as a re-usable component.

There are, in fact, three categories of objects: business, technology and application
objects. An object lives in one and only one category. It is thinking about and
organizing I.S. activities in terms of these categories of objects that delivers much of
the power objects can offer as re-usable components.

BUSINESS OBJECTS

Business objects are objects that represent a person, place, thing or concept in the
business domain. They package business procedures, policy & controls around
business data. Business objects serve as a storage place for business policy and data,
ensuring that data is only used in a manner semantically consistent with business
intent.

One of the greatest costs in business information systems arises from failures to re-
use business data, process and rules. We often refer to this failure by its result: data
integrity problems. Business objects can resolve this problem: instead of limiting
business to sharing only data, business objects allow sharing of business concept
definitions, process, policy and data. In ROI terms, re-use of business objects is a
better investment than re-use of technology objects, even though exactly the opposite
emphasis has been seen in most early re-use efforts.

Business people often look at a business in terms of the things which comprise it and
the processes which work on those things: for example customers, products, orders
and an order fulfillment process. Business objects are specialized further into two
subcategories to represent the business as we think about it: business entity objects
and business process objects.

Business entity objects represent people, places and things, in much the same
manner as a data-modeling entity. Among the differences between a data entity and a
business entity object: (1) the object packages procedure and rules, while the data
entity packages only data; (2) the business entity object can engage in a far richer set
of structural relationships that is available in ER modeling, such as type
classification, roles, composites, aliases and populations. A business entity object
represents a tangible or intangible business noun.

The instances of a business entity objects are records of data or facts about the
business noun. The constraints and procedures packaged in the object type (or class)
represent the actions which can be taken by (or upon) the business noun, and the
rules under which this action can occur. The relationships between business entity

Three categories of
objects

Viewing business in
business terms

Business entity
objects are actors

10Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol

object types characterize the identity of these objects, and real-world associations in
which they engage. (See Illus. 1) The type structures which define the specializations
of one object type from another, and the role structures which define the assumable
behavior, collectively specify structural patterns of definition and identity which
give business entity objects their meaning in the business context.

Business Entity Objects and their Relationships

Flight Segment Seat
Attributes

Carrier."Carrier Code"
Flight."Flight Number"
Origin.Airport."IATA Code"
Destination.Airport."IATA Code"
"Row Number"
Services

Availability
Assign
Deassign
Occupy

Flight Segment
Attributes

Carrier."Carrier Code"
Flight."Flight Number"
Origin.Airport."IATA Code"
Destination.Airport."IATA Code"
"Departure Time"
"Arrival Time"
Services

Depart
Arrive

Carrier
Attributes

"Airline Name"
"Carrier Code"
Services

"FAA Certify"
"FAA Decertify"

Flight
Attributes

Carrier."Carrier Code"
"Flight Number"
Services

Schedule
Cancel

Airport
Attributes

"Airport Name"
"IATA Code"
Services

"Weather Close"
terminates

originates

transports

P

spans

operates

Illustration 1. : Business entity objects with selected services and attributes displayed. This is also an example of
a business structural pattern, to be further discussed below.

Business process objects represent business verbs. They represent business processes
(as opposed to procedures), where a process is characterized by the interaction of a
set of business objects which interact in a predictable, repeatable manner to produce
a recognized business result. Business entity objects are the actors or role-players
that carry out the business process. Each interaction between a pair of business entity
objects represents one work step in the business process. (See Illus. 2)

Just as a business entity object can have instances, so can a business process object.
Its instances represent in-progress units of work. Its attributes reflect the process
state or are references to the business entity objects which carry out the process. Its
services start, stop, step and status units of work. Business process objects can also
be specialized from (that is, subtypes of) more generalized or abstract process

Business process
objects are actions

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 11

objects. One would expect this, as business entity objects and business process
objects are both specializations of the concept of business object.

Business Entity Objects Interact in Processes

Reservation Agent
Services

"Book Reservation"
"Ticket Reservation"

Passenger
Services

"Frequent Flyer
Number"

"Seat Preference"

Flight
Segment Seat

Services

Availability
Assign

Deassign
Occupy

Reservation
Services

Book
Ticket
Cancel

ticket

book

assign

availability

frequent flyer number

seat preference

ticket reservation

book reservation

Illustration 2. Interactions between business entity objects which comprise the worksteps of a business process
object are shown in OOBE Object Behavior Diagram notation.

Business objects are candidates for re-use on several levels:

1. Within the organization, to share data, implement standard business policies, and
eliminate redundant procedures;

2. Within an industry, so that members of an industry need not reinvent the 80% of
their business which is fundamentally like others in the field;

3. Across industries, as a mechanism for integrating vendors and suppliers in a
value chain;

4. Generic objects, as a foundation from which to jump-start design of any business
model.

Let us consider examples of each.

All efforts (object or otherwise) at data and process standardization in any company
have been aimed at the first level. Most organizations that are developing custom re-
usable business objects for internal use are also targeting the first level - even where
the target may be phrased as standardization across applications.

Several industry consortia and vendors are working toward the second level.
Petroleum Open Software Consortium (POSC, Houston, Texas) and Sematech

Where Business
Objects are Re-used

Level 1

Level 2

12Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol

(Austin, Texas) have developed industry business object models for, respectively,
petroleum exploration and extraction, and semiconductor manufacturing. Infinity
(Menlo Park, Calif.) offers a financial/trading class library.

Digital Equipment Corp. (Maynard, Mass) offers a business object model with
specialized variants which has been used in a variety of industries: semiconductor
(discrete) manufacturing, oil & gas, pharmaceutical (process) manufacturing, mining
and banking. Software2000 (Hyannis, Mass) offers business object model products
for two business areas which cut across industries: human resources and accounting.

Digital Equipment Corp. (as part of the product listed above) and Open Engineering
Inc. (San Francisco, Calif.) offer what one might call “base” or generic objects
which form the basis for developing one’s own business model. In both cases, these
re-usable parts are offered as part of a package which includes services and tools.
The reader will find that this idea of offering generic objects based on a firm’s
experience in modeling or systems development will become increasingly common,
and object-experienced consultants will often work from such “strawman” object
models.

TECHNOLOGY OBJECTS

Technology objects represent a programming or technology concept, and thus are the
building blocks of applications and implemented business objects. Examples of
technology objects include GUI components, object request brokers, databases, base
data structure classes and application frameworks. Technology objects comprise the
infrastructure from which systems are built. Even more than with business objects,
technology objects can be essentially the same across companies.

As with business objects, significant opportunities for re-use exist on several levels:

⇒ Basic software development technology, such as base classes for data structures
(numerics, money, strings, etc.), date/time utilities, etc.;

⇒ User interface components which provide an abstract mask over the differences
between user interface environments from the software developer’s viewpoint;

⇒ Distributed computing middleware, such as ORBs which provide a virtual
computing environment which spans the network;

⇒ Robustness services, such as transaction processing, name/location management,
secure messaging, etc. (OMG calls these Object Services);

⇒ Storage, such as components which provide a uniform storage model across
different storage management products;

⇒ Workflow management, a cross between storage and transaction services for
running business processes;

⇒ Adapters, software components which provide access to legacy data,
transactions or applications;

From a ROI perspective, technology objects should be purchased off the shelf. Little
(if any) competitive edge can be gained from custom-building one’s own technical
infrastructure when commercial off-the-shelf (COTS) products exist to perform such
functionality.

Level 3

Level 4

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 13

APPLICATION OBJECTS

Application objects are built to solve business problems, as are applications today.
They focus on a specific work task or problem, though they may be useful in other
situations if well designed. They are assemblies of business objects & foundation
objects, glued together with program code. Using client-server terms, application
objects are clients of business objects. Examples here would include Order Entry,
Quarterly Report, and New Account Setup applications.

Application objects are not high-priority re-use targets. They are (or at least can be)
highly personalized. The bulk of re-usable components have been “extracted” into
business and technology objects, leaving applications rather pure to form: literally,
ways of applying the technology and business components. In any event,
applications developed from an application-centric perspective will yield fewer re-
usable components to the enterprise because the components were developed to fit a
particular purpose. This is not to say that application objects may never be reusable,
but their re-use delivers significantly less systematic value because they are
inherently smaller in scope, more specific in purpose (viewpoint), and designed to
solve a specific (rather than general) solution.

Scaling Up: Frameworks and Patterns

TECHNOLOGY FRAMEWORKS AND PATTERNS

A framework is a collection of abstract and concrete classes, and the interfaces
between them. Wirffs-Brock, Johnson and Johnson have defined a framework as the
design of a subsystem in the same way that an abstract class is the design of a
concrete class. In an application, this subsystem might be the mechanism for data
retrieval and display which is used throughout an entire application system. A
framework provides a model of interaction among several objects belonging to
classes defined by the framework. Thus, a framework is a set of classes which are
associated by a set of structural relationships. Instances of these classes can interact
in various ways which are delimited by these structural relationships. These
structures and interactions form what we shall call patterns. The framework is a set
of configurable parts (the concrete and abstract classes). The parts can be configured
to interact in many different ways with the set of patterns provided by the
framework. The framework defines the patterns.

Like the pre-fabricated components used to build many modern "tilt up" office
buildings and homes, design frameworks can be rapidly configured and assembled
into a wide variety of software applications. Generally, application frameworks serve
a particular purpose, such as the construction of on-line screens which store and
retrieve data from an SQL DBMS. A framework built for one general purpose might
not be useful for a very different purpose -- for example the on-line application
framework described above probably would not help us build a real-time telemetry
system. In practice, however, the vast majority of applications supported by most
I.S. organizations are on-line and reporting systems. Frameworks can provide
significant cost and time savings, while delivering more bug-free code per developer

Frameworks enable
design re-use

14Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol

day. An application framework is a large-grain re-usable component which can
substantially leverage the software development process.

BUSINESS OBJECT FRAMEWORKS AND PATTERNS

Experience with BPR suggests that all businesses operate a similar set of
fundamental business processes -- although each business tends to implement those
processes in different ways. One would expect, then, that the fundamental processes
of any business could be represented by a common set of business objects. I call
these business process patterns. Furthermore, one finds certain structures repeated
across businesses. For example, all businesses have some concept of customer,
supplier and employee. These business objects are roles of another (abstract)
business object which is commonly called legal party. This is an example of what I
call a business structure pattern.

Thus, a set of abstract and concrete business object classes with a set of built-in
business process patterns and business structure patterns would be a business object
framework. One would shape such a framework into processes which could serve
many different businesses. Specializations of components would enforce the unique
business policies and rules of an organization. Specializations of business process
patterns would implement core business processes in a way that reflected the
company's unique competitive edge. Specializations of business structure patterns
would reflect differences in definition and emphasis of the components within the
business processes.

Business object frameworks have significant implications for large-scale re-use. One
could envision commercial off-the-shelf generic business models, or others which
were targeted to a specific vertical industry. Such products exist today in several
industries, and are under development for near-term release in others. Research into
the supply of commercial off-the-shelf business object frameworks is being
conducted by the Object Management Group's Business Object Management Special
Interest Group (OMG BOMSIG) which this writer chairs. The results are expected to
unearth many new products in this arena.

Sharing a common set of technology components across a mid- to large-size
Information Systems organization requires strong internal management practices.
Sharing business objects across an enterprise requires an even more robust
management and process structure, as both the business and IS “sides” of the
organization must be involved to define, specify, specialize and maintain business
entity and process objects which accurately reflect the operations of the enterprise.
Thus, the balance of this report will examine an organizational model which focuses
IS on its core processes -- providing the robust organization and process structure
needed to approach this level of enterprise re-use.

Business frameworks
offer more leverage
than business
objects

Contribution to
Re-use

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 15

Organizing for Re-Use

Today, most I.S. groups are functionally structured. The hierarchy commonly
decomposes into operations, data administration, applications development, and
(sometimes in a separate group) maintenance. Often, there are also functional units
for testing/release control, technology planning, LAN management,
telecommunications, and end-user computing. It is common to see I.S. further
divided along hardware brands or platform size (mainframe, midrange, desktop).
Functional groups represent skill sets delivering like units of work: all programming
is in one group, separated from design or analysis groups, because programming
skills are presumed interchangeable, and the skill areas are presumed to work best
when separated.

In today's functional-structured I.S. group, it has been my observation that 90% of
development and maintenance funding (e.g. excluding operations, equipment leases,
etc.) goes to functional groups responsible for applications. About 5% is allocated to
cross-application activities like BPR, data administration, data base administration
and business modeling. Another 5% goes to technology planning and strategic
architecture.

In many organizations, funding is only available for project-related activities. Cross-
project or infrastructure activities are simply not funded, either by policy or because
no equitable mechanism is in place for allocating budget to collective or cross-
departmental efforts. When technology is purchased, it is too often selected for,
funded by and used on a single project.

Most IS organizations
are functionally
structured

Little IS funding goes
to infrastructure

16Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol

Current I.S. Structure is Orthogonal to Re-Use

Business TechnologyApplication

Organization

Illustration 3. Today, most Information Systems organiations have a functional structure, which fragments the
group into application-focused teams and is orthogonal to the actual processes which must be implemented. The
required processes align with the three categories of objects: deliver business components, deliver technical
infrastructure and deliver applications. All three function as interlinked manufacturing lines.

To substantially change this picture, IS would organize around its own core
processes. (See Illus. 3) The value structure would shift from a craft wherein the
focus is on the supposed defects in off-the-shelf products which require development
of completely custom, non-standard alternatives, to a manufacturing process wherein
the focus is on value delivered to the business.

To accomplish this, IS would organize as a set of manufacturing processes that
delivers three types of components: business, foundation and application objects.
Because the business and its processes are captured in the business objects,
understanding the business itself is no longer part of the application development
process. The technology infrastructure is captured in purchased and integrated
foundation objects. Because technology infrastructure is a corporate function shared
by all applications, the focus of application design shifts to designing what the
application does rather than how technology is assembled.

Several sizable firms have started migrating their I.S. capability toward this model.
A few are mentioned here in brief. Connecticut Mutual Life Insurance (Hartford,
Conn.) redesigned their I.S. organization and had all employees reapply for the
newly-designed job positions based on experience and skills. A major Canadian
petroleum refining firm aligned their I.S. development capabilities to produce
business, technology and application components. Wells Fargo Bank (San Francisco,
Calif.) is experimenting with this model in part of their I.S. organization. Another

IS should be process
structured

Who is Doing This?

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 17

insurance firm, one of the top 10 property and casualty insurers in the U.S., has been
examining this approach in the context of an organization with SEI CMM Level 1
characteristics.

Not everyone has been successful. One major casual clothing manufacturer/retailer
started the process of redefining organization and job roles, even to the extent that
employees were competing for new jobs. The organization backed out of a plan to
restructure I.S. around business components due, in part, to the politics around
breaking up established application-centered power structures.

Perhaps as a leading indicator (or a warning call, depending on the industry in which
the reader happens to work), a number of leading Japanese industrial and utility
giants are starting down this path. This organization model for I.S. dovetails nicely
with established Japanese manufacturing practices, in particular with the thinking of
Deming and such practices as just-in-time manufacturing.

In the balance of this report, I will present a vision for organizing I.S. around a
flexible manufacturing process structure. This vision reflects work being done at a
few organizations that are pushing the edge of the envelope today. It is, however,
identical in principle and concept to work that is already completely proven and in
place at hardware manufacturing organizations world wide. And the reader may
recall that only a few years ago, every “edge of the performance envelope” computer
was built around custom, discrete component processors...

In this analyst’s assessment, supported by the work of groups like the Software
Engineering Institute, it is the software manufacturing industry that is presently
behind the power curve. This vision proposes a set of steps forward.

As a result of such realignments, one would expect both the I.S. organization's
topology and resource allocation to change substantially as the process and
organization mature toward this flexible manufacturing model. In particular, most of
IS funds and personnel would be allocated to infrastructure development and
maintenance -- not to application development and maintenance. The following
proportions are based on my own observations of IS projects, and the input of other
IS and consulting professionals:

• 60% of the development and maintenance funding will be allocated to the
business object delivery process, including tasks as variant as BPR and business
object server design.

• 20% of the funds will be allocated to acquisition, integration and deployment of
a shared technology infrastructure.

• 20% will be used to develop and maintain "applications".
These figures were developed by estimating the proportion of application project
resources which are actually used to develop the “business”, “technology
infrastructure” and “application” components of typical application systems today.

Although many IS professionals might assess the “cost” of technology infrastructure
in today’s systems as greater than 20% of budget, this analyst believes that the cause

Infrastructure would
be Funded more than
Applications

18Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol

is structural: mechanisms to acquire, maintain and enforce a shared technology
infrastructure are infrequently in place and effective. In many IS organizations, each
application project develops most (if not all) of its own technology infrastructure.
Therefore proportionally more budget and time are allocated today to this area than
are actually required (individual, legitimate exceptions notwithstanding).

On the “business” side, the structural burden created by the traditional application
development technology, process and environment frequently prevents projects from
meeting business requirements. As a result, large parts of functionality needed to
operate or leverage the business are not delivered until years after they are needed --
or simply not delivered at all (Paulk, Weber, Curtis and Chrissis, The Capability
Maturity Model, Addison-Wesley, 1995). Given:

• the 1-4 year applications backlog in large I.S. shops, and
• my experience at virtually every I.S. organization with which I have worked or

consulted in the last 14 years that the end-user has stopped asking I.S. for many
needed systems and functions, therefore making the backlog artificially low,

this analyst believes that the actual demand for business functionality is far greater
than today’s budget allocation would suggest. If one takes seriously the
reengineering ideas of Davenport (Process Innovation, Harvard Business School
Press, 1993), Rummler & Brache (Improving Performance, Jossey-Bass, 1995), and
Hammer & Champy (Re-Engineering the Corporation, Harper Business, 1993), and
the continuous improvement ideas of Deming (Out of the Crisis, MIT Press, 1982)
and the Software Engineering Institute, it is reasonable to conclude that the
“business” component of I.S. responsibility will consume a clear majority of
funding, time and staff resources in a mature I.S. process and organization.

Several lessons have been learned by the data community which should be applied to
object re-use. Numerous organizations have successfully jockeyed conflicting
definitions and data structures onto common ground. Applications have been
successfully developed to share corporate data. We do know how to re-use data
assets. We also know from experience that organization, process, skills and funding
are required. Organized re-use does not just happen - it requires a well-resourced
team with appropriate political and technical skills, tools and sponsorship. Re-use is
not a by-product of application development - corporate entities and processes must
be defined from a company point of view to provide enterprise-wide perspective (i.e.
a perspective which reflects how the whole company, as opposed to a single group or
applications, views such things as customer or product). Tools and methods will not
overcome defective values or a counter-productive organization structure. The big
problems are human, not technical.

Business objects put a new spin on an old challenge. Traditional data management
functions faced conflicts created by the organization's structure itself. Data
professionals collided with application developers because the semantics (business
rules and processes) intended to work upon and preserved the integrity of shared
data were under the control of someone with a different agenda, budget, schedule,
outlook and management reporting structure. Business object resolve this conflict by
repackaging business data and process. This is why upwards of 60% of an IS

Experience with re-
use exists in Data
Administration

Business objects
resolve data sharing
problems

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 19

organization's development and maintenance resources would be applied to business
objects: work now assigned to application developers would now be assigned to
business object developers. Hand-in-hand with the re-assignment of work would go
a reassignment of workers and management. This change would leave behind only
true application development and maintenance.

Business Object Management involves deployment of teams to manage the
definition, development and deployment of business entity objects and business
process objects. Each team would be completely responsible - from concept through
code and operation - for the components it managed. By aligning such teams closely
with the core concepts and processes of the business itself, IS is more capable of
responding quickly to business change. Moreover, IS is structured around the
processes required to deliver high-value re-usable business components.

Generalized Business Entity Object Specialized Business Entity Object
Financial Instrument Stock

Bond
Managed Fund

Account Fund Account
Customer Account

Exchange Market Trade
Swap
Loan

Legal Party Customer
Traded Company
Bond Issuer

Illustration 4. A list of business entity objects from a hypothetical brokerage and
investment fund management business.

Earlier in this report, we identified some candidate business objects from a
brokerage business. Here is an expanded list from which we can build an example
organization under the Business Object Management concept. (See Illus. 4 and 5)
Please note that the sole purpose of these example objects is to illustrate the
organization structure proposed in this report, and not to suggest a complete or
correct business model.

Business Process Object
Manage Fund
Broker Exchange
Lend Asset
Collect Asset
Disburse Payment
Illustration 5. A list of business process objects for our business example.

Business entity object teams would be formed around financial instrument, account,
exchange and legal party. Subteams would be responsible for the specializations of

Business object
teams

20Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.DISTRIBUTED COMPUTING MONITOR Vol

each major abstraction, for example stock, bond, and managed fund subteams would
work within the financial instrument team. These groups would be responsible for
the full life cycle of their component(s) (i.e. business modeling, software and data
design, coding, database management, etc.)

Matrix structure around business objects

Financial
Instrument

Stock

Managed
Fund

Bond

Fund Management

Brokering

Illustration 6. Teams would be structured to support the full life cycle of each business entity object and business
process object. Sub-teams (like those for financial instrument) would be formed around specializations. Matrix
reporting (shown as dashed boundaries) would be set up to negotiate between process teams and the teams
responsible for the entity objects involved in the process.

Business process object teams would overlap (or matrix, to use management jargon)
the business entity object teams. Process teams would be responsible for BPR
activities conducted with the line of business groups. In such activities they would
engage the appropriate business entity object teams to represent and maintain their
respective components. The business process teams would negotiate required
changes with the various business entity object teams, and would be responsible for
their own business process objects. From the list above, business process object
teams would be formed around fund management, brokering, lending, collection and
disbursement. (See Illus. 6) Process teams could also matrix other process teams
where one process requires another as a sub-process, for example fund management
may require a brokering process, and brokering in turn may require collection and
disbursement of funds.

DISTRIBUTED COMPUTING MONITOR Vol. 10, No. 3Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited.

For reprints, call (617) 742-5200. 21

Conclusions

Business objects are powerful because they package in a sharable unit many parts of
our understanding of a business and its processes that heretofore have been
independent and free-floating: definitions of key concepts, the data kept about those
concepts, the processes that work on those concepts and data, and the business rules
and integrity constraints which govern process, data and concept membership.
Business objects provide the packages for modeling and implementing one single
logical source for data and procedures about each essential business concept in a
way that guarantees consistency across applications, departments, the enterprise and
even multiple related enterprises. Business entity object and their assembly into
processes provide a way to make business systems mirror the business itself by
allowing new systems to be built in terms of these objects and their interactions.

Business object frameworks offer a way to package business objects and business
processes. Frameworks and patterns of business objects represent the next step in the
developing field of business objects. Frameworks and patterns will force significant
changes in the way we approach BPR, business application development and
business modeling with objects.

Business object frameworks also suggest changes in the I.S. business process. For
example, groups which currently manage data would manage data, procedure and
constraints. These groups would manage the specialization and operation of a
business object framework, instead of only managing data models and databases.

Robert E. Shelton is President and Chief Technologist of Open Engineering, Inc., a
San Francisco-based consulting firm specializing in object technology and business
engineering. Mr. Shelton is Chairman of the Object Management Group's Business
Object Management Special Interest Group (BOMSIG). He is Editor and Columnist
for Data Management Review, and past Editor of SIGS Publications Hotline on
Object Oriented Technology. If you have questions or comments, he may be reached
at 415-989-9050, fax at 415-989-9055, or email at rshelton@openeng.com.

Next month’s Distributed Computing Monitor will address
Object Databases in Distributed Environments.

For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

